【広告】Amazonリンククリック後、何かを買うと北大Wikiの運営費になります

北大地図パズル紹介バナー

【ゲキムズ?】 北大地図パズル


「応用物理工学コース」の版間の差分

提供: 北大Wiki
ナビゲーションに移動 検索に移動
(体裁の調整)
12行目: 12行目:
  
 
== 教育内容 ==
 
== 教育内容 ==
物理学は大きく分けて、「素粒子・宇宙物理」と「物性物理」に分かれる。[[理学部]][[物理学科]](応物同様移行点は地の底をのたうち回っている)は主に前者を、応用物理学コースは主に後者に重きを置いたカリキュラムとなっている。
+
物理学は大きく分けて、「素粒子・宇宙物理」と「物性物理」に分かれる。[[理学部]][[物理学科]](応物同様移行点は地の底をのたうち回っている)は主に前者を、応用物理学コースは主に後者に重きを置いているような気がする。
  
 
素粒子・宇宙物理が読んで名のごとく巨大なものを相手にしているのに対し、物性物理は固体の構造などミクロなものを主題としている。
 
素粒子・宇宙物理が読んで名のごとく巨大なものを相手にしているのに対し、物性物理は固体の構造などミクロなものを主題としている。
なんだ、応物は宇宙やらないのか、ロマンねえなと僕も思っていたが、キッテル固体物理学の序章だかに、「数十人集まって莫大な予算かけないとできない素粒子物理より、2、3人、あるいは1人で大きな発見をできる物性物理の方がロマンあるしょ」みたいなことが書かれていた。
+
ロマンがないような気もするが、キッテル固体物理学の序章だかに、「数十人集まって莫大な予算かけないとできない素粒子物理より、2、3人、あるいは1人で大きな発見をできる物性物理の方がロマンあるしょ」みたいなことが書かれていた。
  
 
物性物理の研究で比較的一般にもよく知られているのは超伝導体の研究だろう。
 
物性物理の研究で比較的一般にもよく知られているのは超伝導体の研究だろう。
 
ある時学生実験の最中に超伝導体を研究しているおじいちゃんに「常温超伝導体発見できると思ってるんですか?発見する前に死にますよ??もっと楽しいことないんですか?」と聞いたところ「○○君は分かってないね~エネルギーオーダーで考えてみなよ、100Kなんて常温(273K)と桁が一緒なんだからほぼ同じだよ。絶対できるよ」と目を輝かせながら言われて、ああ、かっこいい、、、と思ってしまった。
 
 
最近アメリカで常温超伝導体が発見され(ただし超高圧化)授業中教員がテンション上がっていた。あまり悔しそうではなかった。
 
最近アメリカで常温超伝導体が発見され(ただし超高圧化)授業中教員がテンション上がっていた。あまり悔しそうではなかった。
  
25行目: 23行目:
 
高校で物理学を選択した人は覚えること少なくて論理的に考えれば答えが出るので楽だったとは思うが、大学での物理は数学を使いこなせることが必須である。
 
高校で物理学を選択した人は覚えること少なくて論理的に考えれば答えが出るので楽だったとは思うが、大学での物理は数学を使いこなせることが必須である。
  
ただ、哲学的な議論を要する理学部[[数学科]]のような数学とは違って、すでに枯れた技術と化した数学を使えるようになればよいだけなので数学自体の重さ的には高校数学の延長と考えればよいだろう。
+
ただ、理学部[[数学科]]のような数学とは違って、すでに枯れた技術と化した数学を使えるようになればよいだけなので数学自体の重さ的には高校数学の延長と考えればよいだろう。
  
一年生のときに[[線形代数学|線形代数]]と[[微分積分学|微分積分]]をきちんとやらなかった学生はその後の三年間、数学をよくわからないブラックボックスとして扱うことになるだろう。
+
一年生のときに[[線形代数学|線形代数]]と[[微分積分学|微分積分]]をきちんとやらなかった学生はその後の三年間、数学をよくわからないブラックボックスとして扱うことになる。
物理学は世の中の種々の現象を数式で表そうという学問であるから物理学で新たな発見をしようとするなら、物理学科で学ぶ程度の数学では不十分で最先端までの数学を一通り確認しておく必要があるだろう。
 
  
 
== おすすめ書籍など ==
 
== おすすめ書籍など ==

2021年4月16日 (金) 20:18時点における版

応用物理工学コース(おうようぶつりがくコース、英: Applied Physics and Engineering Course)は工学部応用理工系学科のコースの一つ。

概要[編集]

移行点の項で応物教員の嘆きの声を引用したように、応物人気は著しく低く集まる学生も仕方なく進学してきた人々が多い。実際なんで応物に進んだの?と聞くと、理由なんて一つしかないでしょと返ってくるので身近に応物コース生がいたらぜひ聞いてみてほしい。

ただし、この質問を後期入学生に聞いてしまうと、「いや、俺後期だから」と返されてお互い嫌な気持ちになるので注意しよう。

移行点の高さは概ね女子率に比例すると記述したが、もちろん移行点低空飛行の応物コースに女子は各学年1人か多くても2人である。おそらく女子学生は真面目なのでそんな不人気学科に行ってしまったら人生終わると思って勉強を頑張るのだろう。ここで予言するが、移行点が高くなればかなりの確率で女子率は改善されると思う。

さて、移行点が地べたを這いずり回る応用物理学コースであるが教育内容のレベルが低いかと言われればそんなことはない。当たり前だが数物系の教員たちは圧倒的に賢い。 今まで信じられていたハイゼンベルクの不確定性原理を修正し、ノーベル賞確実と言われている小澤の不等式の実証実験を行ったのは応用物理学コースの長谷川准教授である。

教育内容[編集]

物理学は大きく分けて、「素粒子・宇宙物理」と「物性物理」に分かれる。理学部物理学科(応物同様移行点は地の底をのたうち回っている)は主に前者を、応用物理学コースは主に後者に重きを置いているような気がする。

素粒子・宇宙物理が読んで名のごとく巨大なものを相手にしているのに対し、物性物理は固体の構造などミクロなものを主題としている。 ロマンがないような気もするが、キッテル固体物理学の序章だかに、「数十人集まって莫大な予算かけないとできない素粒子物理より、2、3人、あるいは1人で大きな発見をできる物性物理の方がロマンあるしょ」みたいなことが書かれていた。

物性物理の研究で比較的一般にもよく知られているのは超伝導体の研究だろう。 最近アメリカで常温超伝導体が発見され(ただし超高圧化)授業中教員がテンション上がっていた。あまり悔しそうではなかった。

学部の四年間は物理の基礎となる「力学」「電磁気学」「熱力学」「量子力学」を中心とし、物性物理の要である「固体物理学」「光物理学」などを学ぶ授業になる。 高校で物理学を選択した人は覚えること少なくて論理的に考えれば答えが出るので楽だったとは思うが、大学での物理は数学を使いこなせることが必須である。

ただ、理学部数学科のような数学とは違って、すでに枯れた技術と化した数学を使えるようになればよいだけなので数学自体の重さ的には高校数学の延長と考えればよいだろう。

一年生のときに線形代数微分積分をきちんとやらなかった学生はその後の三年間、数学をよくわからないブラックボックスとして扱うことになる。

おすすめ書籍など[編集]

関連項目[編集]

外部リンク[編集]



北大Wikiアクセス数
全期間 最近1週間
記事「応用物理工学コース」 0 0
北大Wiki全体 Error! Error!

北大Wikiに関するお問い合わせはこちら